18.152 PROBLEM SET 6 SOLUTIONS

DONGHAO WANG

1. Problem 3

In Lecture 8, we studied a variant of Problem 3 in dimension 2. The main difference between \mathbb{R}^{2} and \mathbb{R}^{6} arises from the Sobolev Embedding theorem. Let us first state the version we need for this problem

Theorem 1.1 (The Sobolev Inequality). Let $\bar{\Omega} \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Then for any smooth function $f \in$ $C^{\infty}(\bar{\Omega})$ with $\left.f\right|_{\partial \Omega} \equiv 0$, we have

$$
\|f\|_{L^{q}(\Omega)} \leqslant C(\Omega, p, n)\|\nabla f\|_{L^{p}(\Omega)} \text { with } \frac{1}{q}=\frac{1}{p}-\frac{1}{n} .
$$

for any $1 \leqslant p<n$. When $n<p \leqslant \infty$, we have

$$
\|f\|_{L^{\infty}(\Omega)} \leqslant C(\Omega, p, n)\|\nabla f\|_{L^{p}(\Omega)}
$$

The Sobolev inequality allows us to trade derivatives of f to increase the index p. Suppose $p=2$ and $n=6$, then we can estimate L^{q}-norm of f with $q=3>2$. To increase q further, we have to make use of higher derivative of f :

Theorem 1.2 (The Sobolev Inequality II). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Then for any $m \geqslant 1$ and any smooth function $f \in C^{\infty}(\bar{\Omega})$ with $\left.\nabla^{k} f\right|_{\partial \Omega} \equiv 0,0 \leqslant k \leqslant m-1$, we have

$$
\|f\|_{L^{q}(\Omega)} \leqslant C(\Omega, p, n, m)\left\|\nabla^{m} f\right\|_{L^{p}(\Omega)} \text { with } \frac{1}{q}=\frac{1}{p}-\frac{m}{n} \text {. }
$$

for any $1 \leqslant p<\frac{n}{m}$. When $p>\frac{n}{m}$, we have

$$
\|f\|_{L^{\infty}(\Omega)} \leqslant C(\Omega, p, n, m)\left\|\nabla^{m} f\right\|_{L^{p}(\Omega)} .
$$

Proof. By repeatedly applying Theorem 1.1, we obtain that

$$
\left\|\nabla^{k} f\right\|_{L^{q_{k}}(\Omega)} \leqslant C\left(\Omega, q_{k+1}, n\right)\left\|\nabla^{k+1} f\right\|_{L^{q_{k+1}}(\Omega)} \text { with } \frac{1}{q_{k}}=\frac{1}{p}-\frac{m-k}{n}
$$

for any $0 \leqslant k \leqslant m-1$ if $1 \leqslant p<\frac{n}{m}$. Then we combine these estimates together.

[^0]If $p>\frac{n}{m}$, at some intermediate step, we will be able to estimate

$$
\left\|\nabla^{k} f\right\|_{L^{\infty}(\Omega)}
$$

for some $0 \leqslant k \leqslant m-1$. Then we apply the second part of Theorem 1.1 to continue.

As a result, in dimension 2,

$$
\|f\|_{L^{\infty}(\Omega)} \leqslant\left\|\nabla^{2} f\right\|_{L^{2}(\Omega)}
$$

while in dimension 6 ,

$$
\|f\|_{L^{6}(\Omega)} \leqslant\left\|\nabla^{2} f\right\|_{L^{2}(\Omega)} \text { and }\|f\|_{L^{\infty}(\Omega)} \leqslant\left\|\nabla^{4} f\right\|_{L^{2}(\Omega)}
$$

Remark 1.3. For the critical index $p=n$, the estimate

$$
\|f\|_{L^{\infty}(\Omega)} \leqslant\|\nabla f\|_{L^{n}(\Omega)}
$$

does not hold.
Solution to Problem 3. We follow Lecture 8 and divide the proof into 4 steps. Fix a large constant $T>0$. We focus on the region $[0, T] \times \mathbb{R}^{6}$.

Step 1. The solution u vanishes outside $[0, T] \times B_{R+T}(0)$. This follows from the energy estimate. For any $\left(t_{0}, x_{0}\right) \notin[0, T] \times B_{R+T}(0)$, consider the integral

$$
E_{x_{0}}(t)=\frac{1}{2} \int_{\left|x-x_{0}\right| \leqslant T-t}|\nabla u|^{2}+\left|u_{t}\right|^{2} \geqslant 0 .
$$

Then $E(0)=0$ and $E^{\prime}(t) \leqslant 0,0 \leqslant t \leqslant T$. As a result, $E\left(t_{0}\right)=0$ and $u\left(t_{0}, x_{0}\right)=0$ if $t_{0}<T$. The case when $t_{0}=T$ follows from the continuity of u.

Step 2. Now consider the global energy

$$
E(t):=\frac{1}{2} \int_{\{t\} \times B_{R+T}(0)}|\nabla u|^{2}+\left|u_{t}\right|^{2} \geqslant 0 .
$$

Since $E(t)$ is conservative in time,

$$
\frac{1}{2} \int_{\{t\} \times B_{R+T}(0)}|\nabla u|^{2} \leqslant E(t)=E(0)=\frac{1}{2} \int_{\mathbb{R}^{6}}|\nabla g|^{2}+|h|^{2},
$$

for any $0 \leqslant t \leqslant T$.
Step 3. Repeat Step 1 and Step 2 for spatial derivatives of u. Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{6}\right), \alpha_{i} \in \mathbb{Z}_{\geqslant 0}$ be a multi-index with $|\alpha|:=\sum \alpha_{i}$ and define

$$
D^{\alpha} u=\partial_{1}^{\alpha_{1}} \cdots \partial_{6}^{\alpha_{6}} u
$$

Then for any multi-index $\alpha, D^{\alpha} u$ solves the wave equation with initial data:

$$
\begin{aligned}
\left(D^{\alpha} u\right)_{t t} & =\Delta\left(D^{\alpha} u\right), x \in \mathbb{R}^{6}, t \geqslant 0, \\
D^{\alpha} u(x, 0) & =D^{\alpha} g(x), \\
\left(D^{\alpha} u(x, 0)\right)_{t} & =D^{\alpha} h(x) .
\end{aligned}
$$

As a result, Step 2 implies that

$$
\frac{1}{2} \int_{\{t\} \times B_{R+T}(0)}\left|\nabla D^{\alpha} u\right|^{2} \leqslant \frac{1}{2} \int_{\mathbb{R}^{6}}\left|\nabla^{|\alpha|+1} g\right|^{2}+\left|\nabla^{|\alpha|} h\right|^{2} .
$$

Apply this estimate for any multi-index with $|\alpha| \leqslant 3$, we conclude that

$$
\int_{\{t\} \times B_{R+T}(0)}\left|\nabla^{4} u\right|^{2} \leqslant C\left(\nabla^{4} g, \nabla^{3} h\right) .
$$

Step 4. Now we apply Theorem 1.2 with $\Omega=B_{R+T}(0)$, then

$$
\|u\|_{L^{\infty}\left(\{t\} \times B_{R+T}(0)\right)} \leqslant\left\|\nabla^{4} u\right\|_{L^{2}\left(\{t\} \times B_{R+T}(0)\right)} \leqslant C\left(T, R, \nabla^{4} g, \nabla^{3} h\right),
$$

for any $0 \leqslant t \leqslant T$.

2. Problem 4(b)

Many students figured out Problem 4(a), but most of you didn't realize how to apply $4(\mathrm{a})$ to $4(\mathrm{~b})$. In fact, Problem $4(\mathrm{~b})$ do not require any new computations.

Sketch of Problem 4(b). Problem 4(a) was stated for the initial data:

$$
g(x)=\sum_{i=1}^{\infty} g_{i} w_{i}(x), \quad h(x)=\sum_{i=1}^{\infty} h_{i} w_{i}(x)
$$

Let us apply Problem 4(a) to the initial data $(k<l)$:

$$
g_{k, l}(x):=\sum_{i=k+1}^{l} g_{i} w_{i}(x), \quad \quad h_{k, l}(x):=\sum_{i=k+1}^{l} h_{i} w_{i}(x) .
$$

Then the function $u^{k}-u^{l}$ solves the wave equation with:

$$
\left(u^{k}-u^{l}\right)(x, 0)=g_{k, l}(x), \quad\left(u^{k}-u^{l}\right)_{t}(x, 0)=h_{k, l}(x)
$$

Now Problem 4(a) implies that

$$
\begin{aligned}
\left\|\nabla\left(u^{k}-u^{l}\right)(\cdot, t)\right\|_{L^{2}(\Omega)}^{2} & \leqslant\left\|\nabla g_{k, l}\right\|_{L^{2}(\Omega)}^{2}+\left\|h_{k, l}\right\|_{L^{2}(\Omega)}^{2} \\
& =\sum_{i=k+1}^{l}\left|g_{i}\right|^{2} \lambda_{i}+\sum_{i=k+1}^{l}\left|h_{i}\right|^{2} .
\end{aligned}
$$

On the other hand,

$$
\|\nabla g\|_{2}^{2}=\sum_{i=1}^{\infty}\left|g_{i}\right|^{2} \lambda_{i}, \quad \quad\|h\|_{2}^{2}=\sum_{i=1}^{\infty}\left|h_{i}\right|^{2}
$$

so

$$
\lim _{k, l \rightarrow \infty} \sum_{i=k+1}^{l}\left|g_{i}\right|^{2} \lambda_{i}+\sum_{i=k+1}^{l}\left|h_{i}\right|^{2}=0 .
$$

3. Problem 4(C)

Solution to Problem 4(c). Given $\epsilon>0$, we choose a smooth function $\chi: \Omega \rightarrow \mathbb{R}$ such that $\chi(x)=0$ if $d(x, \partial \Omega) \geqslant 2 \epsilon$ and $\chi(x)=0$ if $d(x, \partial \Omega) \leqslant 0$. Then, given $v: \Omega \rightarrow \mathbb{R}$ we have

$$
\left\|\nabla^{k}(\chi v)\right\|_{L^{2}} \leqslant C \sum_{i=0}^{k}\left\|\nabla^{i} v\right\|_{L^{2}}
$$

for some $C=C(\chi, k)$. If χv is smooth, then $\chi v \in C_{0}^{\infty}$. Hence, the Sobolev inequality implies that there exists a fixed $m \in \mathbb{N}$ such that

$$
\|v\|_{C^{k-m}\left(\Omega_{2 \epsilon}\right)} \leqslant\|\chi v\|_{C^{k-m}(\Omega)} \leqslant\left\|\nabla^{k}(\chi v)\right\|_{L^{2}} \leqslant C \sum_{i=0}^{k}\left\|\nabla^{i} v\right\|_{L^{2}},
$$

where $\Omega_{2 \epsilon}=\{x \in \Omega: d(x, \partial \Omega) \geqslant 2 \epsilon\}$.
On the other hand, by using the idea of the problem 4 (b), we have

$$
\lim _{\min \{k, l\} \rightarrow+\infty} \sum_{i=0}^{j}\left\|\nabla^{i}\left(u^{k}-u^{l}\right)\right\|_{L^{2}}=0 .
$$

Therefore, for each $j \in \mathbb{N}$ we have

$$
\lim _{\min \{k, l\} \rightarrow+\infty}\left\|u^{k}-u^{l}\right\|_{C^{j-m}\left(\Omega_{2 \epsilon}\right)}=0
$$

namely the limit $u=\lim u^{k}$ is of class $C^{j-m}\left(\Omega_{2 \epsilon}\right)$ for each j and ϵ. Thus, u is smooth. In addition, $u_{t t}-\Delta u=\lim \left(u_{t t}^{k}-\Delta u^{k}\right)=0$ holds in Ω, namely u is a solution to the wave equation. Moreover, the Cauchy conditions $u(x, 0)=g(x)$ and $u_{t}(x, 0)=h(x)$ hold by definition. In addition, $u^{k}=0$ on $\partial \Omega$ implies $u=0$ on $\partial \Omega$. However, we need to show that $u \in C^{0}(\bar{\Omega})$, which we would not discuss in this course.

[^0]: Date: May. 9th, 2020.

