
18.152 PROBLEM SET 6 SOLUTIONS

DONGHAO WANG

1. Problem 3

In Lecture 8, we studied a variant of Problem 3 in dimension 2. The
main difference between R2 and R6 arises from the Sobolev Embedding
theorem. Let us first state the version we need for this problem

Theorem 1.1 (The Sobolev Inequality). Let Ω Ă Rn be a bounded
domain with smooth boundary. Then for any smooth function f P

C8pΩq with f |BΩ ” 0, we have

}f}LqpΩq ď CpΩ, p, nq}∇f}LppΩq with
1

q
“

1

p
´

1

n
.

for any 1 ď p ă n. When n ă p ď 8, we have

}f}L8pΩq ď CpΩ, p, nq}∇f}LppΩq.

The Sobolev inequality allows us to trade derivatives of f to increase
the index p. Suppose p “ 2 and n “ 6, then we can estimate Lq-norm
of f with q “ 3 ą 2. To increase q further, we have to make use of
higher derivative of f :

Theorem 1.2 (The Sobolev Inequality II). Let Ω Ă Rn be a bounded
domain with smooth boundary. Then for any m ě 1 and any smooth
function f P C8pΩq with ∇kf |BΩ ” 0, 0 ď k ď m´ 1, we have

}f}LqpΩq ď CpΩ, p, n,mq}∇mf}LppΩq with
1

q
“

1

p
´
m

n
.

for any 1 ď p ă n
m
. When p ą n

m
, we have

}f}L8pΩq ď CpΩ, p, n,mq}∇mf}LppΩq.

Proof. By repeatedly applying Theorem 1.1, we obtain that

}∇kf}Lqk pΩq ď CpΩ, qk`1, nq}∇k`1f}Lqk`1 pΩq with
1

qk
“

1

p
´
m´ k

n
,

for any 0 ď k ď m´ 1 if 1 ď p ă n
m

. Then we combine these estimates
together.
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If p ą n
m

, at some intermediate step, we will be able to estimate

}∇kf}L8pΩq

for some 0 ď k ď m ´ 1. Then we apply the second part of Theorem
1.1 to continue. �

As a result, in dimension 2,

}f}L8pΩq ď }∇2f}L2pΩq,

while in dimension 6,

}f}L6pΩq ď }∇2f}L2pΩq and }f}L8pΩq ď }∇4f}L2pΩq.

Remark 1.3. For the critical index p “ n, the estimate

}f}L8pΩq ď }∇f}LnpΩq,

does not hold.

Solution to Problem 3. We follow Lecture 8 and divide the proof into 4
steps. Fix a large constant T ą 0. We focus on the region r0, T s ˆR6.
Step 1. The solution u vanishes outside r0, T s ˆ BR`T p0q. This

follows from the energy estimate. For any pt0, x0q R r0, T s ˆ BR`T p0q,
consider the integral

Ex0ptq “
1

2

ż

|x´x0|ďT´t

|∇u|2 ` |ut|2 ě 0.

Then Ep0q “ 0 and E 1ptq ď 0, 0 ď t ď T . As a result, Ept0q “ 0
and upt0, x0q “ 0 if t0 ă T . The case when t0 “ T follows from the
continuity of u.

Step 2. Now consider the global energy

Eptq :“
1

2

ż

ttuˆBR`T p0q

|∇u|2 ` |ut|2 ě 0.

Since Eptq is conservative in time,

1

2

ż

ttuˆBR`T p0q

|∇u|2 ď Eptq “ Ep0q “
1

2

ż

R6

|∇g|2 ` |h|2,

for any 0 ď t ď T .
Step 3. Repeat Step 1 and Step 2 for spatial derivatives of u. Let

α “ pα1, ¨ ¨ ¨ , α6q, αi P Zě0 be a multi-index with |α| :“
ř

αi and
define

Dαu “ Bα1
1 ¨ ¨ ¨ B

α6
6 u.



18.152 PROBLEM SET 6 SOLUTIONS 3

Then for any multi-index α, Dαu solves the wave equation with initial
data:

pDαuqtt “ ∆pDαuq, x P R6, t ě 0,

Dαupx, 0q “ Dαgpxq,

pDαupx, 0qqt “ Dαhpxq.

As a result, Step 2 implies that

1

2

ż

ttuˆBR`T p0q

|∇Dαu|2 ď
1

2

ż

R6

|∇|α|`1g|2 ` |∇|α|h|2.

Apply this estimate for any multi-index with |α| ď 3, we conclude that
ż

ttuˆBR`T p0q

|∇4u|2 ď Cp∇4g,∇3hq.

Step 4. Now we apply Theorem 1.2 with Ω “ BR`T p0q, then

}u}L8pttuˆBR`T p0qq ď }∇4u}L2pttuˆBR`T p0qq ď CpT,R,∇4g,∇3hq,

for any 0 ď t ď T . �

2. Problem 4(b)

Many students figured out Problem 4(a), but most of you didn’t
realize how to apply 4(a) to 4(b). In fact, Problem 4(b) do not require
any new computations.

Sketch of Problem 4(b). Problem 4(a) was stated for the initial data:

gpxq “
8
ÿ

i“1

giwipxq, hpxq “
8
ÿ

i“1

hiwipxq.

Let us apply Problem 4(a) to the initial data (k ă l):

gk,lpxq :“
l

ÿ

i“k`1

giwipxq, hk,lpxq :“
l

ÿ

i“k`1

hiwipxq.

Then the function uk ´ ul solves the wave equation with:

puk ´ ulqpx, 0q “ gk,lpxq, puk ´ ulqtpx, 0q “ hk,lpxq.

Now Problem 4(a) implies that

}∇puk ´ ulqp¨, tq}2L2pΩq ď }∇gk,l}2L2pΩq ` }hk,l}
2
L2pΩq

“

l
ÿ

i“k`1

|gi|
2λi `

l
ÿ

i“k`1

|hi|
2.
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On the other hand,

}∇g}22 “
8
ÿ

i“1

|gi|
2λi, }h}22 “

8
ÿ

i“1

|hi|
2,

so

lim
k,lÑ8

l
ÿ

i“k`1

|gi|
2λi `

l
ÿ

i“k`1

|hi|
2
“ 0. �

3. Problem 4(c)

Solution to Problem 4(c). Given ε ą 0, we choose a smooth function
χ : Ω Ñ R such that χpxq “ 0 if dpx, BΩq ě 2ε and χpxq “ 0 if
dpx, BΩq ď 0. Then, given v : Ω Ñ R we have

}∇k
pχvq}L2 ď C

k
ÿ

i“0

}∇iv}L2 ,

for some C “ Cpχ, kq. If χv is smooth, then χv P C80 . Hence, the
Sobolev inequality implies that there exists a fixed m P N such that

}v}Ck´mpΩ2εq
ď }χv}Ck´mpΩq ď }∇k

pχvq}L2 ď C
k

ÿ

i“0

}∇iv}L2 ,

where Ω2ε “ tx P Ω : dpx, BΩq ě 2εu.
On the other hand, by using the idea of the problem 4 (b), we have

lim
mintk,luÑ`8

j
ÿ

i“0

}∇i
puk ´ ulq}L2 “ 0.

Therefore, for each j P N we have

lim
mintk,luÑ`8

}uk ´ ul}Cj´mpΩ2εq “ 0,

namely the limit u “ limuk is of class Cj´mpΩ2εq for each j and ε.
Thus, u is smooth. In addition, utt´∆u “ limpuktt´∆ukq “ 0 holds in
Ω, namely u is a solution to the wave equation. Moreover, the Cauchy
conditions upx, 0q “ gpxq and utpx, 0q “ hpxq hold by definition. In
addition, uk “ 0 on BΩ implies u “ 0 on BΩ. However, we need to
show that u P C0pΩq, which we would not discuss in this course. �
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